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What is wavefront reconstruction? —

e Most wavefront sensors do not measure the phase
directly, but instead measure the average derivative

e Most wavefront correctors are used to conjugate that
phase on the mirror’s surface

« We must reconstruct the phase from the WFS slopes,
achieving the most accurate, lowest noise estimate
possible in the least amount of computation




Method 1: Zonal Matrix Reconstruction

e The slope vector s contains x and y slopes for all valid
subapertures in the pupil

 The phase ¢ contains all controllable actuators

e The basis set for reconstruction is the actuators

« We model the WFS measurement process as:

s=Wo

e We can find the measurement matrix W experimentally
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Experimental system matrix % \
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Poke one actuator at a time in the positive and
negative directions and record the WFS centroids

Set WFS centroid values from subapertures far
away from the actuators to 0




Experimental system matrix

DM surface shape WES image

« We’'re left with a # pokes by # pixels
matrix, which we’re calling W




Method 1: Zonal Matrix Reconstruction

e Given the matrix W, we can convert phases to slopes
vias=Wo

e In reality, we’ll be measuring slopes with our WFS, and

we’ll want to use those slopes to estimate the phase via
d=W'ls

e« Wisn’t square, so we’ll compute the inverse using LS:

s=Wo
Whs=wWIwe
(WIW)"'wts = ¢
« Unfortunately, W'W isn’t invertible either -- it doesn’t

have full rank because the WFS is blind to some modes
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DM Voltage Control

HEEEENN
HNENENENE
ENENENEEEEN
ENENENENENEN N Ldp m file,
ENEEENENENENEEE
ENENENENENENENES . Mldk
HENENEN NN EN N

(1] [ () [ (o [ [ ]
llllllllll Refresh voltag
[ 1] [ () [ ([ (o [ [ [
llllllllll Clea |
EREEEEEEE N

1 I P
EEEEEEEEEE NSNS EEE _feply as orig,
EEEEEN NN

EREEEEEEEEEEEEEE. Load recon,.. |

Instead we’ll compute the pseudo-inverse of W

using singular value decomposition (SVD), giving us
an expression for ¢ = W's

Page 7




Singular-Value Decomposition (SVD) &
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 If A is a square matrix, we can write:
Av = v

« Where U is a non-zero vector (the eigenvector) and A\

is a scalar (the eigenvalue)

e If A is not square, we can equivalently compute the
eigenvectors of ATA. These are called the singular
vectors of A

« The square roots of the eigenvalues of ATA are called
the singular values of A




Singular-Value Decomposition (SVD) &
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e If Wis a real m x n matrix, we can represent it as:

W =Uxv?’

e Uis an m x m matrix while columns are the
eigenvectors of WWT

e 2 is an m x n diagonal matrix whose diagonal values are
the singular values of W

e VT is the transpose of an n x n matrix whose columns
are the eigenvectors of WTW




Calculating the Pseudoinverse with SVD

« Given W =UXV?', the pseudo inverse of W is:
Wt =veiut
 Where T is the pseudoinverse

e The pseudoinverse of X is just a diagonal matrix whose
diagonal elements are the reciprocal of 2’s diagonal
elements




Method 1: Zonal Matrix Reconstruction "
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e With the reconstruction matrix we found previously,
we can reconstruct an example wavefront!

DM_acts,= (1-leakage) DM_acts, ; — gain(W' - WFS image, ,)

DM surface shape Wavefront sensor output Science image plane

In this “leaky integrator” example, leakage = 0.01 and gain = 0.5
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“Slaved” actuators // \\\
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Some actuators are located outside the pupil and
do not directly affect the wavefront

They are often “slaved” to the average value of its
neighbors




Method 2: Modal Matrix Reconstruction

« We define an orthogonal modal basis set to represent
the actuators: (m,, m|) =0 for k = |




Examples of modal basis sets

e Actuators

® /ernike modes

o0 T S

e Fourier modes

OSSN\




Method 2: Modal Matrix Reconstruction

« We define an orthogonal modal basis set to represent
the actuators: (m,, m|) =0 for k = |

« We can analyze the phase in terms of modal
coefficients with the inner product ¢, = (p, m,)

« The phase is synthesized from the modal coefficients as

| m
b= cn—
. (mp, my)

=0

 We can put the modes into rows or columns to produce
the modal synthesis matrix M

Page 15




Method 2: Modal Matrix Reconstruction

e Now, the slope measurement process is:

s=WM e

 And the modal reconstruction is:

c= MW 1s

e An advantage of modes is that they can be weighted
and manipulated. E.g. we can easily remove piston, tip,
and tilt from Zernike modes by zeroing the correct
coefficients using matrix G:

d=MTGMW s




WF reconstruction & control don’t happen instantaneously!
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When the atmospheric coherence time is short compared with
the AO system’s speed, we start to see effects like the “butterfly”

Perrin/Maire/GPI Data Analysis Team See also Madurowicz+18,19




Flux ratio to host star (reflected light)
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Predictive Wavefront Control % \
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e Several methods for predictive control have been
proposed since the 1990s, e.g. Fourier predictive
control (Poyneer et al. 2007, 2008) and Empirical
Orthogonal Functions (Guyon & Males 2017)

« Each method has a different way of computing the WF
one time delay into the future based on past WF
information

« Each method makes different assumptions about the
data and the atmosphere




Guyon & Males 2017: put the
n most recent wavefronts into
a “history” vector h(t)




Guyon & Males 2017: find a
filter F that minimizes the
distance between F h(t) and
the future wavefront w(t+6t)

ming: < ||F'h(t) — w;(t + 6t)||* >,




Guyon & Males 2017: to compute the filter F, we’ll
use a “training set” of previous history vectors, D,

and interpolate to find the corresponding training

set P shifted one time delay later

Matrix of History Vectors:

D = [h(t)h(t — dt)...h(t — (I — 1)d4]

Matrix of “Future” Vectors: ot is the time lag

 wo(t +0t) ... wo(t — (I — 1)dt + 6t)

W1 (E408) . Wy (t— (I — 1)dt +6t)




Guyon & Males 2017: use
SVD to solve for the filter in
terms of the training set

ming < ||[F'h(t) — w;(t + 6t)||? >,

min g ||F*D — Pj||?




Guyon & Males 2017: how
well does it work in a simple
frozen flow simulation?

2000nm

No AO Correction Pupil Phase

7N
N

—1000nm

RMS Wavefront Error [pm]

—2000 nm
7.5 10.0 125 150 ~10

Time [s]




Guyon & Males 2017: how
well does it work in a simple
frozen flow simulation?
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RMS wavefront [um]
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Summary of Wavefront Reconstruction

« Because most wavefront sensors don’t measure the phase directly,
we must “reconstruct” the phase based on our information from

the wavefront sensor

e Usually, WF reconstruction is done with a matrix
- We can reconstruct the wavefront “zonally” in DM actuator
space or “modally” e.g. in Zernike modes
- We typically measure the interaction matrix experimentally

- We compute the pseudo-inverse of the interaction matrix to
find the reconstruction matrix

e Predictive WFC is motivated by the time delay between
reconstructing the phase and correcting the WF with the DM (often
a few milliseconds or less)




